A Relation between Small Amplitude and Big Limit Cycles
نویسندگان
چکیده
منابع مشابه
Hopf Bifurcations and Small Amplitude Limit Cycles in Rucklidge Systems
In this article we study Hopf bifurcations and small amplitude limit cycles in a family of quadratic systems in the three dimensional space called Rucklidge systems. Bifurcation analysis at the equilibria of Rucklidge system is pushed forward toward the calculation of the second Lyapunov coefficient, which makes possible the determination of the Lyapunov and higher order structural stability.
متن کاملSmall amplitude limit cycles for the polynomial Liénard system
We prove a quadratic in m and n estimate for the maximal number of limit cycles bifurcating from a focus for the Liénard equation x+f(x) _ x+ g(x) = 0; where f and g are polynomials of degree m and n respectively. In the proof we use a bound for the number of double points of a rational a¢ ne curve.
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملthe relation between bilingualism and translation: a case study of turkish bilingual and persian monolingual translation students
translation studies have become an accepted academic subject and books, journals and doctoral dissertations appear faster than one can read them all (bassnet and lefevere, 1990). but this field also brought with itself so many other issues which needed to be investigated more, in the heart of which, issues like ideology, ethics, culture, bilingualism and multilingualism. it is reported that ove...
Maximum amplitude of limit cycles in Liénard systems.
We establish sufficient criteria for the existence of a limit cycle in the Liénard system x[over ̇]=y-ɛF(x),y[over ̇]=-x, where F(x) is odd. In their simplest form the criteria lead to the result that, for all finite nonzero ɛ, the amplitude of the limit cycle is less than ρ and 0≤a≤ρ≤u, where F(a)=0 and ∫(0)(u)F(x)dx=0. We take the van der Pol oscillator as a specific example and establish that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2001
ISSN: 0035-7596
DOI: 10.1216/rmjm/1021249441